TitleKNN方法在癌症中红外光谱检测中的应用
Other TitlesApplication of KNN Method to Cancer Diagnosis Using Fourier-Trans form Infrared Spectroscopy
Authors李响
李庆波
徐怡庄
张广军
吴瑾光
杨丽敏
凌晓锋
周孝思
王健生
Affiliation北京航空航天大学仪器科学与光电工程学院,北京,100083
北京大学化学与分子工程学院,稀土材料化学及应用国家重点实验室,北京,100871
北京大学第三医院普外科,北京,100083
西安交通大学第一医院外科,陕西,西安,710061
KeywordsKNN方法 癌症 FTIR 模式识别
KNN
cancer
FTIR
pattern recognition
Issue Date2007
Publisher光谱学与光谱分析
Citation光谱学与光谱分析.2007,27,(3),439-443.
Abstract红外光谱主要是研究分子中以化学键联结的原子之间的振动光谱,它能够在分子水平上揭示正常组织和癌组织之间存在的差异.文章利用化学计量学中的有关知识通过计算机自动对未知样本光谱进行判别分析.首先应用平滑处理,基线校正(SNV方法),奇异值剔除(RHM方法)等算法对光谱数据进行预处理,然后采用K-最近邻法(简称KNN法)实现未知样本的自动判别,提高了癌症红外光谱检测的准确度.文章对63例胃组织样品进行了傅里叶变换红外光谱判别分析,与病理检验结果比较,准确度达到91.7%.
Early diagnosis and early medical treatments are the keys to save the patients' lives and improve their living quality. Fourier transform infrared (FTIR) spectroscopy can be used to distinguish malignant from normal tissues at the molecular level. In the present paper, programs were made with chemometrics method of pattern recognition to classify unknown tissue samples. Spectral data were pretreated by using smoothing, SNV and RHM method. Cross validation was used to test the discrimination effect of KNN method. A total of 63 gastric tissue samples were employed in this study, including 26 cases of normal tissue samples and 37 cases of cancerous tissue samples. The recognition results of the KNN method showed that the correctness of classification achieved 91.7%.
URIhttp://hdl.handle.net/20.500.11897/250296
ISSN1000-0593
DOI10.3321/j.issn:1000-0593.2007.03.007
IndexedSCI(E)
中文核心期刊要目总览(PKU)
中国科技核心期刊(ISTIC)
中国科学引文数据库(CSCD)
Appears in Collections:化学与分子工程学院
第三医院
稀土材料化学与应用国家重点实验室

Web of Science®



Checked on Last Week

Scopus®



Checked on Current Time

百度学术™



Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.