Title应用广义多因子降维法分析数量性状的交互作用
Other TitlesDetecting interaction for quantitative trait by generalized multifactor dimensionality reduction
Authors陈卿
唐迅
胡永华
Affiliation北京大学公共卫生学院流行病与卫生统计学系教育部流行病学重点实验室,100191
Keywords广义多因子降维法
数量性状
交互作用
Generalized multifactor dimensionality reduction
Quantitative trait
Interaction
Issue Date2010
Publisher中华流行病学杂志
Citation中华流行病学杂志.2010,31,(8),938-941.
Abstract介绍广义多因子降维法(GMDR)在交互作用分析,尤其是数量性状的基因-基因交互作用分析中的应用.文中简述GMDR的原理、基本步骤及其特点,并结合实例说明如何在研究中对GMDR进行应用.GMDR是无模型的交互作用分析方法,能够处理连续型结局变量,还可纳入协变量改善预测准确率,目前已成功应用于尼古丁依赖等疾病的研究.GMDR能够处理多种样本类型和结局变量类型,与其他连续变量交互作用分析方法相比具有一定优势.
To introduce the application of generalized multifactor dimensionality reduction (GMDR) method for detecting interactions, especially gene-gene interactions for quantitative traits. Principles, basic steps as well as features of GMDR were discussed, illustrated with a practical research case. As an interaction analysis method, GMDR was model-free, available for studies on different outcome variables including continuous ones, and permitted adjustment for covariates to improve prediction accuracy. Evidences of its capacity had been supposed by research on different diseases, e.g. nicotine dependence. GMDR method was applicable to different types of samples and outcome variables, which was superior to other statistical approaches for continuous variables in some aspects.
URIhttp://hdl.handle.net/20.500.11897/29177
ISSN0254-6450
DOI10.3760/cma.j.issn.0254-6450.2010.08.024
IndexedPubMed
中文核心期刊要目总览(PKU)
中国科技核心期刊(ISTIC)
中国科学引文数据库(CSCD)
Appears in Collections:公共卫生学院

Web of Science®



Checked on Last Week

Scopus®



Checked on Current Time

百度学术™



Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.