Title | 完全混合--随机变量的组合学 |
Authors | 王彬 |
Affiliation | 北京大学 |
Keywords | 完全混合 多变量相关结构 反相关性 组合学 |
Issue Date | 2012 |
Citation | 北京大学. |
Abstract | 本文由随机变量反相关性的问题引入,提出了完全混合的概念,并总结了完全混合的各种加法性质,分析了一些常见分布的可混合性。<br> 本文利用组合方法归纳构造,先离散,后连续,彻底解决了单调密度分布的完全混合问题,得到了能否混合的充要条件。并在此基础上完全解决了密度单调前提下的变量和的凸函数期望最小值问题。这一结果解决了很多风险理论中的最值问题。<br> 本文还研究了凸密度分布和较均匀分布的可混合性,证明了它们具有比较好的可混合性。此外还解决了径向对称分布的完全混合问题。最后,本文提出了完全混合很多未解决问题,指出了该领域未来发展的一些方向。 |
URI | http://hdl.handle.net/20.500.11897/350705 |
Appears in Collections: | 学位论文 |