TitleSELC: A self-supervised model for sentiment classification
AuthorsQiu, Likun
Zhang, Weishi
Hu, Changjian
Zhao, Kai
AffiliationDepartment of Chinese Language and Literature, Peking University, China
NEC Laboratories, China
School of Software, Tsinghua University, China
Issue Date2009
CitationACM 18th International Conference on Information and Knowledge Management, CIKM 2009.Hong Kong, China.
AbstractThis paper presents the SELC Model (SElf-Supervised, (Lexicon-based and (Corpus-based Model) for sentiment classification. The SELC Model includes two phases. The first phase is a lexicon-based iterative process. In this phase, some reviews are initially classified based on a sentiment dictionary. Then more reviews are classified through an iterative process with a negative/positive ratio control. In the second phase, a supervised classifier is learned by taking some reviews classified in the first phase as training data. Then the supervised classifier applies on other reviews to revise the results produced in the first phase. Experiments show the effectiveness of the proposed model. SELC totally achieves 6.63% F1-score improvement over the best result in previous studies on the same data (from 82.72% to 89.35%). The first phase of the SELC Model independently achieves 5.90% improvement (from 82.72% to 88.62%). Moreover, the standard deviation of F1-scores is reduced, which shows that the SELC Model could be more suitable for domain-independent sentiment classification. Copyright 2009 ACM.
Appears in Collections:中国语言文学系

Files in This Work
There are no files associated with this item.

Web of Science®

Checked on Last Week


Checked on Current Time


Checked on Current Time

Google Scholar™

License: See PKU IR operational policies.