Title基于人体骨架特征学习的动作识别
Other TitlesResearch on skeleton feature learning based human action recognition
Authors林里浪
宋思捷
刘家瑛
Affiliation北京大学王选计算机研究所
Keywords人体动作识别
骨架数据分析
特征学习
human action recognition
skeleton-based action analysis
representation learning
Issue Date20-Oct-2021
Publisher中国传媒大学学报(自然科学版)
Abstract动作识别是计算机视觉研究中的一个基本但具有挑战性的问题。在过去的几年中,许多基于RGB视频的识别技术已经得到了巨大的发展,并取得了显著的成果。但是,处理RGB视频可能非常耗时。其中,在动作识别领域,人体骨架数据具有轻量级的特点,同时对人体外观、环境背景等信息具有不变性,因此,这种数据模态受到了越来越多的关注。然而,基于人体骨架的动作识别面临两个问题:人体骨架数据的噪声问题和数据标注的依赖问题。噪声问题是指骨架数据中存在噪声影响数据的准确性,而数据标注依赖问题则是指在监督学习中,需要大量的标签数据进行训练。本文针对人体骨架数据在采集中的噪声问题,提出了一种基于噪声适应的动作识别模型,设计了回归模型和生成模型充分利用不同场景下的噪声数据特点。并且针对人体骨架数据过于依赖标签数据,利用自监督学习方法,提出了一个基于多任务自监督学习的动作识别方法。
动作识别是计算机视觉研究中的一个基本但具有挑战性的问题。在过去的几年中,许多基于RGB视频的识别技术已经得到了巨大的发展,并取得了显著的成果。但是,处理RGB视频可能非常耗时。其中,在动作识别领域,人体骨架数据具有轻量级的特点,同时对人体外观、环境背景等信息具有不变性,因此,这种数据模态受到了越来越多的关注。然而,基于人体骨架的动作识别面临两个问题:人体骨架数据的噪声问题和数据标注的依赖问题。噪声问题是指骨架数据中存在噪声影响数据的准确性,而数据标注依赖问题则是指在监督学习中,需要大量的标签数据进行训练。本文针对人体骨架数据在采集中的噪声问题,提出了一种基于噪声适应的动作识别模型,设计了回归模型和生成模型充分利用不同场景下的噪声数据特点。并且针对人体骨架数据过于依赖标签数据,利用自监督学习方法,提出了一个基于多任务自监督学习的动作识别方法。
URIhttp://hdl.handle.net/20.500.11897/625090
ISSN1673-4793
DOI10.16196/j.cnki.issn.1673-4793.2021.05.003
Appears in Collections:王选计算机研究所

Files in This Work
There are no files associated with this item.

Web of Science®



Checked on Last Week

Scopus®



Checked on Current Time

百度学术™



Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.